国产丝袜在线精品丝袜|在线A毛片免费视频观|日韩精品久久久一区二区|亚洲成在人网站天堂直播|99在线精品66视频无码|亚洲欧美不卡视频在线播放|国产精品久久久久久免费一级|久久精品国产亚洲AV香蕉软件

American, Chinese scientists identify new chemical pathway of air pollution in China

Source: Xinhua| 2018-10-19 14:03:55|Editor: ZD
Video PlayerClose

WASHINGTON, Oct. 18 (Xinhua) -- American and Chinese researchers proposed to bring a new pollutant under control in order to reduce extreme air pollution in China.

The study published on Thursday in the journal Geophysical Research Letters showed that a key to reducing regular wintertime air pollution in the country was to reduce the formaldehyde emissions.

"We show that policies aimed at reducing formaldehyde emissions may be much more effective at reducing extreme wintertime haze than policies aimed at reducing only sulfur dioxide," said Jonathan M. Moch, a graduate student at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and first author of the paper.

During days in Beijing with especially high particulate air pollution or PM 2.5, the sulfur compounds significantly increased, which tend to be interpreted as sulfate, so China typically focused on reducing sulfur dioxide.

Although the sulfur dioxide over eastern China has decreased substantially since 2005, particulate air pollution hasn't been rooted out.

The researchers found that the instruments used to analyze haze particles might misinterpret sulfur compounds as sulfate when they are molecules called hydroxymethane sulfonate (HMS).

HMS is formed by the reaction of sulfur dioxide with formaldehyde in clouds or fog droplets. Formaldehyde is a strong-smelling gas, used especially to preserve parts of animals or plants for biological study.

The researchers demonstrated that HMS molecules might constitute a large portion of the sulfur compounds observed in PM2.5 in winter haze. It would help explain the persistence of extreme air pollution events despite the reduction of sulfur dioxide or SO2, according to them.

The primary sources of formaldehyde emissions in eastern China are vehicles and major industrial facilities such as chemical and oil refineries, according to the study.

"Our work suggests a key role for this overlooked chemical pathway during episodes of extreme pollution in Beijing," said Loretta J. Mickley, senior research fellow in SEAS under Harvard.

The study was a collaborative effort with Harvard University, Tsinghua University, and the Harbin Institute of Technology.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001375441051
峨眉山市| 涟源市| 安吉县| 武冈市| 汝城县| 常宁市| 泰和县| 林州市| 溆浦县| 乐至县| 庐江县| 华阴市| 寿阳县| 桑植县| 莱阳市| 上蔡县| 峡江县| 临汾市| 深州市| 晋宁县| 阿巴嘎旗| 汉寿县| 陇西县| 休宁县| 汽车| 赤城县| 祁门县| 昭苏县| 昆山市| 阳城县| 昭通市| 南靖县| 蕲春县| 乐平市| 郧西县| 敦化市| 柯坪县| 郁南县| 正安县| 偃师市| 咸丰县|