国产丝袜在线精品丝袜|在线A毛片免费视频观|日韩精品久久久一区二区|亚洲成在人网站天堂直播|99在线精品66视频无码|亚洲欧美不卡视频在线播放|国产精品久久久久久免费一级|久久精品国产亚洲AV香蕉软件

Mechanical properties of viral DNA determine course of infection: study

Source: Xinhua| 2018-09-06 06:52:36|Editor: Yamei
Video PlayerClose

CHICAGO, Sept. 5 (Xinhua) -- A study by researchers at the University of Illinois (UI) found for the first time that the mechanics of how DNA is packaged inside a virus determine the course of infection.

The study has been published in the journal eLife.

And the mechanics may also apply to viruses that infect humans and other animals, the researchers said.

UI researchers used isothermal titration calorimetry, which can measure discrete changes in thermal energy in a system, to track the course of infection. In a previous study, the researchers found that the process of viral infection gives off heat. In the new study, they exposed the host bacterium, Escherichia coli, to thousands of viral particles, then monitored the thermal ups and downs that occurred as infection progressed.

They found that the infections occurred either synchronously, with hundreds of viruses injecting their DNA into the bacterium at once; or randomly, with infections occurring more slowly in an uncoordinated fashion. A closer look at the viral genetic material prior to infection revealed that the DNA packaged inside the virus tended to be more "liquid-like" in the synchronous infections but stiffer during the random infections.

The synchronous infections corresponded closely with latent infections that preserved the host, while the slower, more random process of infection led to lytic infections that killed the host.

As temperature increased, the viral DNA became more like liquid and infections were more likely to be synchronous. Increases in extracellular magnesium ion concentrations related to cellular metabolism and growth conditions also promoted synchronous infections.

Heat made the DNA molecules inside the capsid more flexible, reducing the sliding friction between them. "The DNA becomes more flexible; it has more of a fluid character," said UI pathobiology professor Alex Evilevitch, who conducted the study.

"We now understand that the mechanics of DNA packaged inside the virus directly influences the direction of infection toward a lytic or latent pathway," he said. "We think this will help us learn how to control infections and prevent them from becoming lytic. It can potentially lead to new therapies to prevent the spread of infection."

The new findings are also "good for virology," Evilevitch said.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011103261374478911
岑溪市| 北流市| 卓尼县| 荆州市| 庐江县| 海伦市| 玉树县| 神农架林区| 沿河| 和政县| 苏州市| 保亭| 湘潭市| 崇义县| 措勤县| 科技| 四平市| 平和县| 汪清县| 拜城县| 天全县| 南通市| 淮安市| 喜德县| 阿勒泰市| 吉林省| 永新县| 津市市| 古田县| 萍乡市| 哈尔滨市| 师宗县| 杭州市| 宁德市| 博野县| 惠安县| 新民市| 镇坪县| 金平| 昭平县| 聊城市|