国产丝袜在线精品丝袜|在线A毛片免费视频观|日韩精品久久久一区二区|亚洲成在人网站天堂直播|99在线精品66视频无码|亚洲欧美不卡视频在线播放|国产精品久久久久久免费一级|久久精品国产亚洲AV香蕉软件

American, Chinese scientists develop new catalyst to help harvest, store clean energy

Source: Xinhua| 2018-03-06 05:11:54|Editor: Mu Xuequan
Video PlayerClose

WASHINGTON, March 5 (Xinhua) -- American and Chinese scientists have synthesized a new, dual-atom catalyst to serve as a platform for artificial photosynthesis, a move that may help harvest and store solar energy more efficiently.

In a study reported on Monday in the Proceedings of the National Academy of Science, scientists displayed an iridium catalyst with only two active metal centers, which can directly harvest solar energy and store the energy in chemical bonds, similar to how photosynthesis is performed but with higher efficiencies and lower cost.

Dunwei Wang, Boston College Associate Professor of Chemistry and the paper's lead author, said, "It addresses the critical challenge that solar energy is intermittent," using the "atomically dispersed catalyst" featuring two atoms.

Researchers synthesized an iridium dinuclear heterogeneous catalyst in a facile photochemical way. They reported that the catalyst showed outstanding stability and high activity toward water oxidation, an essential process in natural and artificial photosynthesis.

According to researchers, challenges are that most active heterogeneous catalysts are often poorly defined in their atomic structures, which makes it difficult to evaluate the detailed mechanisms at the molecular level.

Heterogeneous catalysts, widely used in large-scale industrial chemical transformations, involve the form of catalysis where the phase of the catalyst differs from that of the reactants.

Wang said they managed to determine the smallest active and most durable heterogeneous catalyst unit for water oxidation, previously known only to be done for homogeneous catalysts, whose durability was poor.

They also performed X-ray experiments to determine the structure of the iridium catalyst at Lawrence Berkeley National Laboratory.

Wang said the team was surprised by the simplicity and durability of the catalyst, combined with the high activity toward the desired reaction of water oxidation.

Scientists from the University of California, Irvin; Yale, Tufts, and China's Tsinghua and Nanjing Universities also participated the research.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011105091370185261
偃师市| 宁夏| 镇坪县| 调兵山市| 黑龙江省| 贡觉县| 清流县| 琼结县| 聂拉木县| 婺源县| 莱西市| 襄樊市| 乐安县| 南开区| 许昌县| 商洛市| 保康县| 虎林市| 铁力市| 伊金霍洛旗| 新丰县| 莱芜市| 宁武县| 刚察县| 吉林省| 德安县| 鄂托克旗| 鄄城县| 龙游县| 城固县| 淄博市| 五大连池市| 湘潭县| 凉山| 大英县| 靖西县| 左权县| 乌苏市| 山阳县| 长海县| 津南区|